Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA

Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA - Hallo sahabat Rumus Matematika, Pada sharing pelajaran kali ini yang berjudul Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA, saya telah menyediakan contoh soal hingga pembahasan lengkap dari awal pembahasan sampai akhir materi. mudah-mudahan isi postingan tentang pelajaran yang saya tulis ini dapat anda pahami. okelah, ini dia pembahasan nya.

Materi : Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA
Judul materi : Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA

lihat juga


Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA

Menyelesaikan Sistem Persamaan Linear Tiga Variabel - Sistem persamaan linear tiga variabel dapat diartikan sebagai himpunan dari  tiga buah persaamaan garis lurus dimana masing-masing persamaan tersebut terdiri dari tiga buah peubah (variable). Ada beberapa metode yang bisa kita pakai untuk menyelesaikan sistem persamaan ini, yaitu metode subtitusi, eliminasi, dan determinan. Spesial untuk postingan ini Rumus Matematika Dasar akan menjelaskan cara menyelesaikan persamaan tiga variabel tersebut agar kalian bisa lebih cepat dan mudah dalam menjawab soal-soal mengenai materi pelajaran matematika yang satu ini.

Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV)

Sebenarnya cara menyelesaikannya tidak begitu sulit apabila kalian telah memahami sistem persamaan linear dua variabel. Yuk, mari kita perhatikan langkah-langkahnya di bawah ini:


Langkah Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV)


Sama halnya seperti prinsip penyelesaian persamaan yang lain, pertama-tama kita harus mengurangkan (mengeliminasi) 2 persamaan untuk memperoleh persamaan baru dengan menghilangkan 1 buah variabel. Kalian langung saja simak contohnya sebagai berikut:

Contoh Soal:

Tentukan himpunan penyelesaian x, y dan z dari persamaan berikut!

3x -   y + 2z = 15   ........(i)
2x +  y +   z = 13  ........(ii)
3x + 2y +  2z = 24   .......(iii)

Penyelesaian:

Gunakan metode eliminasi terhadap 2 persamaan terlebih dahulu:

3x - y + 2z = 15   | X 1  →   3x  - y + 2z =  15
2x + y +  z = 13   | X 2  →   4x + 2y + 2z = 26
                            ____________________ -
                                          -x - 3y = -11  ..........(iv)

2x +   y +  z  = 13  | X 2  →  4x + 2y + 2z = 26
3x + 2y + 2z = 24  | X 1 →   3x + 2y + 2z = 24
                            ________________________ -
                                                          x = 2.......(v)

Karena dari persamaan (v) kita sudah mendapatkan nilai x, sekarang tinggal gunakan metode substitusi terhadap persamaan (iv)
  -x - 3y = -11
  -(2) - 3y = -11
          3y  = -11 + 2
         3y  = 9
           y  = 3

Sekarang kita sudah mendapat nilai y. Langsung saja subtitusikan nilai x dan y pada salah satu persamaan i, ii, atau iii untuk mengetahui nilai z:

2x +  y +   z = 13
2(2) + 3 + z  = 13
    4 + 3 + z  = 13
          7 + z  = 13
                 z  = 13 - 7
                 z  = 6

Maka himpunan penyelesaian dari ketiga persamaan tersebut adalah {2; 3; 6}

Mungkin itu saja yang bisa dijelaskan mengenai Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV). Semoga kalian dapat mengerti dan memahami langkah-langkah yang suah dijelaskan. Berlatihlah dengan jenis soal yang lain.


Demikianlah Artikel Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA

Itulah contoh soal ataupun materi pelajaran Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah, sekian postingan pelajaran kali ini.

Anda sedang membaca artikel Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA dan artikel ini url permalinknya adalah https://rumuskelilinglingkaran.blogspot.com/2015/01/cara-mudah-menyelesaikan-sistem.html Semoga artikel ini bisa bermanfaat.

0 Response to "Cara Mudah Menyelesaikan Sistem Persamaan Linear Tiga Variabel (SPLTV) SMA"